Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38592738

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adenosina Difosfato , Adenosina Monofosfato , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Humanos , Regulación Alostérica , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/química , Ligandos , Fosforilación , Adenosina Trifosfato/metabolismo , Activación Enzimática , Unión Proteica
2.
Biochem J ; 480(23): 1951-1968, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37962491

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Dominio Catalítico , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética
3.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203624

RESUMEN

AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.


Asunto(s)
Benzamidas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Pirimidinas , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Activadas por AMP
4.
Cell Rep ; 39(5): 110761, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508122

RESUMEN

AMP-activated protein kinase (AMPK) coordinates energy homeostasis during metabolic and energy stress. We report that the catalytic subunit isoform AMPK-α1 (but not α2) is cleaved by caspase-3 at an early stage during induction of apoptosis. AMPK-α1 cleavage occurs following Asp529, generating an ∼58-kDa N-terminal fragment (cl-AMPK-α1) and leading to the precise excision of the nuclear export sequence (NES) from the C-terminal end. This cleavage does not affect (1) the stability of pre-formed heterotrimeric complexes, (2) the ability of cl-AMPK-α1 to become phosphorylated and activated by the upstream kinases LKB1 or CaMKK2, or (3) allosteric activation by AMP or A-769662. Importantly, cl-AMPK-α1 is only detectable in the nucleus, consistent with removal of the NES, and ectopic expression of cleavage-resistant D529A-mutant AMPK-α1 promotes cell death induced by cytotoxic agents. Thus, we have elucidated a non-canonical mechanism of AMPK activation within the nucleus, which protects cells against death induced by DNA damage.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Caspasas , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Caspasas/metabolismo , Núcleo Celular/metabolismo , Daño del ADN , Fosforilación
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493662

RESUMEN

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Mitocondrias/patología , Mitofagia , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Humanos , Masculino , Ratones , Mitocondrias/metabolismo
7.
Cell Chem Biol ; 27(2): 214-222.e4, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31991096

RESUMEN

Cordycepin (3'-deoxyadenosine) is a major bioactive agent in Cordyceps militaris, a fungus used in traditional Chinese medicine. It has been proposed to have many beneficial metabolic effects by activating AMP-activated protein kinase (AMPK), but the mechanism of activation remained uncertain. We report that cordycepin enters cells via adenosine transporters and is converted by cellular metabolism into mono-, di-, and triphosphates, which at high cordycepin concentrations can almost replace cellular adenine nucleotides. AMPK activation by cordycepin in intact cells correlates with the content of cordycepin monophosphate and not other cordycepin or adenine nucleotides. Genetic knockout of AMPK sensitizes cells to the cytotoxic effects of cordycepin. In cell-free assays, cordycepin monophosphate mimics all three effects of AMP on AMPK, while activation in cells is blocked by a γ-subunit mutation that prevents activation by AMP. Thus, cordycepin is a pro-drug that activates AMPK by being converted by cellular metabolism into the AMP analog cordycepin monophosphate.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Desoxiadenosinas/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Nucleótidos de Desoxiadenina/metabolismo , Desoxiadenosinas/química , Desoxiadenosinas/farmacología , Células Hep G2 , Humanos , Fosforilación/efectos de los fármacos
8.
Cell Res ; 29(6): 460-473, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948787

RESUMEN

AMPK, a master regulator of metabolic homeostasis, is activated by both AMP-dependent and AMP-independent mechanisms. The conditions under which these different mechanisms operate, and their biological implications are unclear. Here, we show that, depending on the degree of elevation of cellular AMP, distinct compartmentalized pools of AMPK are activated, phosphorylating different sets of targets. Low glucose activates AMPK exclusively through the AMP-independent, AXIN-based pathway in lysosomes to phosphorylate targets such as ACC1 and SREBP1c, exerting early anti-anabolic and pro-catabolic roles. Moderate increases in AMP expand this to activate cytosolic AMPK also in an AXIN-dependent manner. In contrast, high concentrations of AMP, arising from severe nutrient stress, activate all pools of AMPK independently of AXIN. Surprisingly, mitochondrion-localized AMPK is activated to phosphorylate ACC2 and mitochondrial fission factor (MFF) only during severe nutrient stress. Our findings reveal a spatiotemporal basis for hierarchical activation of different pools of AMPK during differing degrees of stress severity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Nutrientes/metabolismo , Proteínas Quinasas Activadas por AMP/biosíntesis , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Fosforilación
9.
Methods Mol Biol ; 1732: 69-86, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480469

RESUMEN

AMP-activated protein kinase (AMPK) is an energy sensor that is activated by increases in the cellular AMP/ATP and ADP/ATP ratios by three mechanisms: (1) allosteric activation, (2) promotion of phosphorylation at Thr172 on the α subunit by upstream kinases, and (3) inhibition of dephosphorylation of Thr172 by protein phosphatases. All of these effects are triggered by the binding of AMP or ADP at one or more of three sites on the γ subunit, where they displace ATP. AMPK is also activated by ligands that bind in the ADaM site, which is located between the α and ß subunits. In this chapter we describe cell-free assays that can be used to study these varied activation mechanisms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Enzimas/métodos , Proteínas Quinasas Activadas por AMP/química , Adenosina Difosfato/química , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Regulación Alostérica , Sitios de Unión , Sistema Libre de Células/metabolismo , Activación Enzimática , Marcaje Isotópico/métodos , Ligandos , Radioisótopos de Fósforo/química , Fosforilación , Unión Proteica , Subunidades de Proteína/química
10.
Methods Mol Biol ; 1732: 239-253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480480

RESUMEN

AMP-activated protein kinase (AMPK) is extremely sensitive to cellular stress, so that nonphysiological activation of the kinase can readily occur during harvesting of cells or tissues. In this chapter we describe methods to harvest cells and tissues, and for kinase assays, that preserve the physiological activation status of AMPK as far as possible. Note that similar care with methods of cell or tissue harvesting is required when AMPK function is monitored by Western blotting, rather than by kinase assays. We also describe methods to determine whether compounds that activate AMPK in intact cells do so indirectly by interfering with cellular ATP synthesis or directly by binding to AMPK and, if the latter, whether this occurs by binding at the AMP-binding sites on the γ subunit or at the ADaM site located between the α and ß subunits.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Técnicas de Cultivo de Célula/métodos , Activadores de Enzimas/farmacología , Pruebas de Enzimas/métodos , Subunidades de Proteína/metabolismo , Proteínas ADAM/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Nucleótidos de Adenina/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Técnicas de Cultivo de Célula/instrumentación , Línea Celular , Activación Enzimática/efectos de los fármacos , Pruebas de Enzimas/instrumentación , Humanos , Ratones , Mutación , Fosforilación/efectos de los fármacos , Subunidades de Proteína/genética , Linfocitos T Citotóxicos
11.
Nature ; 548(7665): 112-116, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28723898

RESUMEN

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/metabolismo , Glucosa/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteína Axina/metabolismo , Sitios de Unión , Activación Enzimática , Fibroblastos , Fructosa-Bifosfato Aldolasa/genética , Glucosa/deficiencia , Humanos , Masculino , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
12.
Cell Chem Biol ; 24(7): 813-824.e4, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28625738

RESUMEN

SU6656, a Src kinase inhibitor, was reported to increase fat oxidation and reduce body weight in mice, with proposed mechanisms involving AMP-activated protein kinase (AMPK) activation via inhibition of phosphorylation of either LKB1 or AMPK by the Src kinase, Fyn. However, we report that AMPK activation by SU6656 is independent of Src kinases or tyrosine phosphorylation of LKB1 or AMPK and is not due to decreased cellular energy status or binding at the ADaM site on AMPK. SU6656 is a potent AMPK inhibitor, yet binding at the catalytic site paradoxically promotes phosphorylation of Thr172 by LKB1. This would enhance phosphorylation of downstream targets provided the lifetime of Thr172 phosphorylation was sufficient to allow dissociation of the inhibitor and subsequent catalysis prior to its dephosphorylation. By contrast, sorafenib, a kinase inhibitor in clinical use, activates AMPK indirectly by inhibiting mitochondrial metabolism and increasing cellular AMP:ADP and/or ADP:ATP ratios.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Indoles/farmacología , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Sulfonamidas/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Regulación Alostérica , Sitios de Unión , Dominio Catalítico , Sistema Libre de Células , Activación Enzimática/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Indanos/farmacología , Indoles/química , Indoles/metabolismo , Mutagénesis Sitio-Dirigida , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacología , Compuestos de Fenilurea/química , Compuestos de Fenilurea/metabolismo , Fosforilación/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/farmacología , Sorafenib , Sulfonamidas/química , Sulfonamidas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
13.
Sci Signal ; 9(453): ra109, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27919027

RESUMEN

Adenosine 5'-monophosphate-activated protein kinase (AMPK) is a pivotal regulator of metabolism at cellular and organismal levels. AMPK also suppresses inflammation. We found that pharmacological activation of AMPK rapidly inhibited the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in various cells. In vitro kinase assays revealed that AMPK directly phosphorylated two residues (Ser515 and Ser518) within the Src homology 2 domain of JAK1. Activation of AMPK enhanced the interaction between JAK1 and 14-3-3 proteins in cultured vascular endothelial cells and fibroblasts, an effect that required the presence of Ser515 and Ser518 and was abolished in cells lacking AMPK catalytic subunits. Mutation of Ser515 and Ser518 abolished AMPK-mediated inhibition of JAK-STAT signaling stimulated by either the sIL-6Rα/IL-6 complex or the expression of a constitutively active V658F-mutant JAK1 in human fibrosarcoma cells. Clinically used AMPK activators metformin and salicylate enhanced the inhibitory phosphorylation of endogenous JAK1 and inhibited STAT3 phosphorylation in primary vascular endothelial cells. Therefore, our findings reveal a mechanism by which JAK1 function and inflammatory signaling may be suppressed in response to metabolic stress and provide a mechanistic rationale for the investigation of AMPK activators in a range of diseases associated with enhanced activation of the JAK-STAT pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Endoteliales/metabolismo , Janus Quinasa 1/metabolismo , Transducción de Señal/fisiología , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Sustitución de Aminoácidos , Animales , Células Endoteliales/citología , Activación Enzimática , Janus Quinasa 1/genética , Ratones , Ratones Noqueados , Mutación Missense , Fosforilación , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
14.
Diabetes ; 65(9): 2784-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381369

RESUMEN

Canagliflozin, dapagliflozin, and empagliflozin, all recently approved for treatment of type 2 diabetes, were derived from the natural product phlorizin. They reduce hyperglycemia by inhibiting glucose reuptake by sodium/glucose cotransporter (SGLT) 2 in the kidney, without affecting intestinal glucose uptake by SGLT1. We now report that canagliflozin also activates AMPK, an effect also seen with phloretin (the aglycone breakdown product of phlorizin), but not to any significant extent with dapagliflozin, empagliflozin, or phlorizin. AMPK activation occurred at canagliflozin concentrations measured in human plasma in clinical trials and was caused by inhibition of Complex I of the respiratory chain, leading to increases in cellular AMP or ADP. Although canagliflozin also inhibited cellular glucose uptake independently of SGLT2, this did not account for AMPK activation. Canagliflozin also inhibited lipid synthesis, an effect that was absent in AMPK knockout cells and that required phosphorylation of acetyl-CoA carboxylase (ACC) 1 and/or ACC2 at the AMPK sites. Oral administration of canagliflozin activated AMPK in mouse liver, although not in muscle, adipose tissue, or spleen. Because phosphorylation of ACC by AMPK is known to lower liver lipid content, these data suggest a potential additional benefit of canagliflozin therapy compared with other SGLT2 inhibitors.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Canagliflozina/farmacología , Glucosa/metabolismo , Mitocondrias/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Inmunoprecipitación , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Fosforilación , Transportador 2 de Sodio-Glucosa/genética , Inhibidores del Cotransportador de Sodio-Glucosa 2
15.
Diabetes ; 64(2): 360-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25338814

RESUMEN

Methotrexate (MTX) is a widely used anticancer and antirheumatic drug that has been postulated to protect against metabolic risk factors associated with type 2 diabetes, although the mechanism remains unknown. MTX inhibits 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) and thereby slows the metabolism of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranosyl-5'-monophosphate (ZMP) and its precursor AICAR, which is a pharmacological AMPK activator. We explored whether MTX promotes AMPK activation in cultured myotubes and isolated skeletal muscle. We found MTX markedly reduced the threshold for AICAR-induced AMPK activation and potentiated glucose uptake and lipid oxidation. Gene silencing of the MTX target ATIC activated AMPK and stimulated lipid oxidation in cultured myotubes. Furthermore, MTX activated AMPK in wild-type HEK-293 cells. These effects were abolished in skeletal muscle lacking the muscle-specific, ZMP-sensitive AMPK-γ3 subunit and in HEK-293 cells expressing a ZMP-insensitive mutant AMPK-γ2 subunit. Collectively, our findings underscore a role for AMPK as a direct molecular link between MTX and energy metabolism in skeletal muscle. Cotherapy with AICAR and MTX could represent a novel strategy to treat metabolic disorders and overcome current limitations of AICAR monotherapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Peroxidación de Lípido , Metotrexato/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Línea Celular , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Subunidades de Proteína
16.
Chem Biol ; 21(7): 866-79, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036776

RESUMEN

AMPK is a sensor of cellular energy status and a promising target for drugs aimed at metabolic disorders. We have studied the selectivity and mechanism of a recently described activator, C2, and its cell-permeable prodrug, C13. C2 was a potent allosteric activator of α1-complexes that, like AMP, also protected against Thr172 dephosphorylation. Compared with AMP, C2 caused only partial allosteric activation of α2-complexes and failed to protect them against dephosphorylation. We show that both effects could be fully restored by exchanging part of the linker between the autoinhibitory and C-terminal domains in α2, containing the equivalent region from α1 thought to interact with AMP bound in site 3 of the γ subunit. Consistent with our results in cell-free assays, C13 potently inhibited lipid synthesis in hepatocytes from wild-type and was largely ineffective in AMPK-knockout hepatocytes; its effects were more severely affected by knockout of α1 than of α2, ß1, or ß2.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Activadores de Enzimas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Quinasas Activadas por AMP/química , Adenosina Monofosfato/farmacología , Secuencia de Aminoácidos , Animales , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/metabolismo , Esterificación/efectos de los fármacos , Ácidos Grasos/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Ratones , Datos de Secuencia Molecular , Profármacos/metabolismo , Profármacos/farmacología , Subunidades de Proteína/agonistas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Especificidad por Sustrato
17.
Biochem J ; 459(2): 275-87, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24467442

RESUMEN

The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the 'ST loop' (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)-AMPK pathway, which would otherwise inhibit cell growth and proliferation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Abajo/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Modelos Moleculares , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/genética
18.
Cell Metab ; 18(4): 556-66, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093679

RESUMEN

While allosteric activation of AMPK is triggered only by AMP, binding of both ADP and AMP has been reported to promote phosphorylation and inhibit dephosphorylation at Thr172. Because cellular concentrations of ADP and ATP are higher than AMP, it has been proposed that ADP is the physiological signal that promotes phosphorylation and that allosteric activation is not significant in vivo. However, we report that: AMP is 10-fold more potent than ADP in inhibiting Thr172 dephosphorylation; only AMP enhances LKB1-induced Thr172 phosphorylation; and AMP can cause > 10-fold allosteric activation even at concentrations 1-2 orders of magnitude lower than ATP. We also provide evidence that allosteric activation by AMP can cause increased phosphorylation of acetyl-CoA carboxylase in intact cells under conditions in which there is no change in Thr172 phosphorylation. Thus, AMP is a true physiological regulator of AMPK, and allosteric regulation is an important component of the overall activation mechanism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Difosfato/farmacología , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Berberina/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Sistema Libre de Células , Activación Enzimática , Humanos , Hígado/enzimología , Ratones , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
19.
Chem Biol ; 19(10): 1222-36, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23102217

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. It is activated, by a mechanism requiring the tumor suppressor LKB1, by metabolic stresses that increase cellular ADP:ATP and/or AMP:ATP ratios. Once activated, it switches on catabolic pathways that generate ATP, while switching off biosynthetic pathways and cell-cycle progress. These effects suggest that AMPK activators might be useful for treatment and/or prevention of type 2 diabetes and cancer. Indeed, AMPK is activated by the drugs metformin and salicylate, the latter being the major breakdown product of aspirin. Metformin is widely used to treat diabetes, while there is epidemiological evidence that both metformin and aspirin provide protection against cancer. We review the mechanisms of AMPK activation by these and other drugs, and by natural products derived from traditional herbal medicines.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/química , Antibacterianos/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/patología , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Neoplasias/enzimología , Neoplasias/patología , Neoplasias/prevención & control , Proteínas Serina-Treonina Quinasas/metabolismo , Salicilatos/uso terapéutico
20.
Science ; 336(6083): 918-22, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22517326

RESUMEN

Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Salicilatos/metabolismo , Salicilatos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Sustitución de Aminoácidos , Animales , Aspirina/farmacología , Sitios de Unión , Compuestos de Bifenilo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Línea Celular , Activación Enzimática , Activadores de Enzimas/farmacología , Células HEK293 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Mutación , Consumo de Oxígeno/efectos de los fármacos , Fosforilación , Pironas/farmacología , Ratas , Salicilatos/sangre , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...